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LEl’TER TO THE EDITOR 

Geometry of N = 1 Yang-Mills theory in curved 
superspace 

A A Rosly 
Department of Theoretical Physics, Moscow State University, 117234, Moscow, USSR 

Received 23 September 1982 

Abstract. We generalise the formalism of Ogievetsky and Sokatchev to describe the 
geometry of N = 1 supersymmetric Yang-Mills theory (coupled in general to supergravity). 
This generalisation seems to be analogous to the Kaluza theory. Our presentation uses 
recent developments in geometry of supergravity and exhibits some similarity with the 
construction of Atiyah and Ward. 

The geometrical construction involved in this letter is in fact an application of the 
general one due to Schwarz (1982) who proposed the general notion of induced 
geometry. When we consider some surfaces in a space provided with a geometrical 
structure, this notion gives us the canonical way to define the internal geometry of 
these surfaces. Being the generalisation of a number of well known mathematical 
examples, it was shown by Schwarz (1982) to be adequate for the description of N = 1 
supergravity (see also Rosly and Schwarz 1982a, b). In particular, this notion gives 
the link between the formalism of surfaces and that of ‘constrained geometry’ in 
supergravity . 

However, we do not refer to the general construction until later. First we show 
that the supersymmetric Einstein-Yang-Mills system can be described in terms of 
real surfaces in some complex superspace. Then we present a toy geometrical construc- 
tion which looks like the construction of Atiyah and Ward for self-dual gauge fields. 

The N = 1 Yang-Mills gauge supermultiplet is known (Ferrara and Zumino 1974, 
Salam and Strathdee 1974) to be described by the superfield V = Viri, where ( t i )  is a 
basis of the Lie algebra X of the group K and Vi are real superfields. The gauge 
transformation law is 

(1) 
where A = Airi and Ai are complex chiral superfields. The latter means that DkAi = 0, 
D, (D&) being the ‘flat’ covariant derivatives in superspace (and its complex conjugate). 
A* in (1) denotesthe result of complex conjugation under which ti are assumed to 
be inert, i.e. A* = hiti (if K = U(N) we may take A* = -A+, since then t :  = -ti). 

In the case when the gauge multiplet V couples to supergravity, we must alter the 
law (1) in that Ai become chiral @&hi = 0) with respect to ‘curved’ covariant derivatives. 
To describe the supergravity itself, Ogievetsky and Sokatchev (1980a, b) proposed 
an elegant formalism, in which the role of the fields is played by real surfaces of 
dimension (4,4) (4 bosonic +4  fermionic) in complex superspace (in the minimal 
formulation). The group 2 of all holomorphic transformations of @ 4 s 2  which preserve 

e2iV ~ e2iV -A* e 
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supervolume transforms the surfaces within C4,*. 2 is just the group of gauge 
transformations of the theory. 

Now we show that this formalism can be naturally generalised to include the 
Yang-Mills supermultiplet. The following generalisation proceeds in a manner similar 
to Kaluza's trick (Kaluza 1921, De  Witt 1965). Let us enlarge the space @432 by 
adding an 'internal' space K' (where K' is the complexification of the group K). In 
C492 x K' consider complex 'coordinates' ( x a ,  8", k )  where k E K', a = 1, . . . , 4 ;  (Y = 
1,2.  Let us describe the group of gauge transformations which takes the place of 
3. Besides the transformations of the group 3 in the variables ( x a ,  8 " )  the group 2 
includes also the following holomorphic transformations of x K': 

where A ( x ,  8)E  K'. We assume that the real group K is a subgroup of its com- 
plexification K' (if K = U(N) we take K'= GL(N, e)). Denote by 7~ the projection 
T : K' + K'/K. 

Let us consider real surfaces in C4*2 xK' which have dimension equal to (4 + 
dim K, 4). We restrict ourselves to such surfaces that are invariant under right 
translations by elements of K. Almost any such surface can be fixed (locally) by the 
equations 

(3) 

(4) 

If we parametrise this surface by (5", va, F', a )  where 5" are real (even), vu, F' are 
complex (odd) parameters and a E K, we get 

( 5 )  X U  = 6" +iH"(& v, V ) ,  ,g" = a.  

Here e i v  takes the place of F in (4) with iV(& v, F) lying in the 'purely imaginary' 
part of the Lie algebra of K', so V(5, v, F) can be considered as taking values in X, 
the Lie algebra of K. It is the superfield H a  (cf ( 5 ) )  which contains the component 
fields of supergravity with the correct transformation properties under the group 2? 
(Ogievetsky and Sokatchev (1980a, b). Let us consider the action of the remaining 
part of 9 given by (2). It can be easily seen that V transforms as in ( l ) ,  with 
eh = A (6 +a, v). The function A takes values in the complexification of X and the 
coordinates Ai are chiral fields with respect to 'curved' derivatives (proportional to 
a/av" + i H P a a / a g a ) .  Thus the fields in ( 5 )  (determining the real surface in 4=4*2 xK') 
indeed correspond to the supersymmetric Einstein-Yang-Mills system. The restriction 
(4) of the form of the surfaces (their invariance under the right action of K) becomes 
natural from the more general geometrical point of view, to be discussed later, 

The gauge supermultiplet can be alternatively described by means of the con- 
strained gauge potential dA in superspace (see e.g. Sohnius 1978). The constraints 
on its field strengths (in the tangent frame D,, D,, D,) are 

Im x u  = H a  (Re x, 8, e), 
~ ( k )  = F(Re  x, 8, e). 

k = eiV(&u,i.I 

Fa@ = 0 ,  F'b = 0, (6)  

and one more constraint Fa@ = 0. The last constraint, however, serves only to deter- 
mine the components d,  in terms of da. We do not consider d, at all. The geometrical 
object under consideration is only d, constrained by (6). We note that the constraint 
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FaP = O  is simply the gauge condition in an appropriate formalism. The gauge 
superfield V discussed above arises as the solution to (6 ) .  

Let us consider this geometry in more detail. In the superspace A, usually 
considered in supergravity, the tangent space at each point is spanned by complex 
vectors D, (6&) and real ones D,. In other words, there is a distinguished tangent 
subspace H ,  c T, (A) equipped with the complex structure (i.e. multiplication by the 
imaginary unit is defined in H,)  at each point z ~d). The structure of the above type 
in any manifold is generally called the Cauchy-Riemann structure (cR-structure). For 
some given cR-structure in d consider complex vector fields D, which span the 
complex basis of H,  at each point. Let D, be some real vector fields which extend 
D,, 6, to a basis Da = (Do, D,, D,) of the whole tangent space at every point. In 
general, we have [Do, Dp} = CfQ,, where [ , } denotes the Lie bracket in a supermani- 
fold, i.e. (anti)commutator of vector fields. The cR-structure is called integrable if 
the following constraints are satisfied: C:p = 0, Ckp = 0. This is just the case of N = 1 
supergravity, due to the constraints imposed on the torsion: TLP =0 ,  Tho = O  (see 
Schwarz 1982). 

The above super Yang-Mills gauge potential (d,, d,) is a one-form defined on 
vectors belonging to the tangent subspace H, with values in the Lie algebra 3l of the 
gauge group K. More geometrically, we have the principal bundle P with the structure 
group K and the way to lift (horizontally) the vectors of H, (by means of (d,, A)). 
Let us pass now to the bundle P‘ with the structure group K‘ (the complexification 
of K) and prolong the ‘semiconnection’ (d,, Sa,) on the whole P‘. We can provide 
P‘ with a cR-structure using the complex structure of fibres K‘ and the lifts of Hz’s 
from the base. Now the constraints (6) on (&,SI,) mean that this cR-structure is 
integrable, provided the cR-structure in the base d is integrable. Thus we obtain a 
bundle with the complex structure group K‘ and this bundle has transition functions 
q ( z )  which are chiral, i.e. satisfy the Cauchy-Riemann equations, 6&q = 0, in a given 
cR-structure of the base manifold A. Such bundles could be called integrable CR- 
bundles, or chiral bundles (note that one could equally well understand the abbreviation 
CR either as ‘Cauchy-Riemann’ or ‘chiral’). The above correspondence is one-to-one. 
In fact we have a simple analogue of the Atiyah-Ward (1977) construction. 

Provided an integrable cs-structure in A is given, there is a one-to-one correspon- 
dence between the super Yang-Mills gauge potentials in A (‘semiconnections’ (d,, d,) 
defined along vectors D,, in A)  satisfying constraints (6 ) ,  on the one hand, and 
chiral bundles over A with structure group K‘ and with a reduction to the real subgroup 
K, on the other hand. The above-mentioned reductions are determined as usual by 
sections of the associated bundle with K‘/K as a fibre. Such a section can be given 
(locally) by the function exp iV(& v ,  V ) ,  where (6, v, V )  are coordinates in superspace 
A and V(5, v, F )  EX’ is just the gauge supermultiplet mentioned earlier. In the case 
of coupling to supergravity the cR-structure in the base A is determined by the field 
of supergravity, as already pointed out (see also below). 

An example where cR-structures are relevant is the geometry of real surfaces in 
some complex space X. In this case the subspace H ,  in the tangent space T,(JU) to 
a surface A at z E A  is defined as the so-called maximal complex tangent subspace. 
This means that if we consider T,(M) as the subspace in T,(X) ,  we can multiply the 
vectors of T, (A)  by the imaginary unit (because of the complex structure in X).  Let 
us define H,  = T,(A)  nJ (T , (A) ) ,  where J denotes the operator of multiplication by 
the imaginary unit. We see that {H,, z E A} define a cR-structure in A c X induced 
by the complex structure of the space X. It can easily be seen that such cR-structures 
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are always integrable. The inverse will also be true if all the objects under consideration 
are supposed to be real analytic. We will later assume this about surfaces, potentials, 
etc (this assumption is, however, not strictly necessary). 

As was pointed out above, in supergravity we deal with integrable cR-structures 
in a superspace of real dimension (4,4). The formalism of Ogievetsky and Sokatchev 
gives the realisation of these structures on real surfaces in C4*2 (see Schwarz 1982). 
In view of the correspondence between super Yang-Mills potentials and integrable 
ca-bundles we can mimic the formalism of surfaces. In fact, this was done above. 
As the cR-structure of the base is realised on a surface A in the constraints (6) 
on the super Yang-Mills gauge potential mean that the corresponding cR-bundle can 
be uniquely prolonged to a holomorphic bundle in a neighbourhood of the surface 
A in C4,'. For example, the cR-structure of the 'flat' superspace is known to be 
realised on the quadric Q in C4,2 defined by the equations Im x' = 2 i ~ : @ " 8 ~  ( x ' ,  8" 
are complex coordinates in C4,' and U are the Pauli matrices). Then the super 
Y ang-Mills potentials in 'flat' superspace correspond to holomorphic bundles in 
neighbourhoods of Q in C4*' with reductions to the real subgroup and vice versa. 

Let us pass now to a more general point of view using the notion of induced 
geometry (see Schwarz 1982). Here the word 'geometry' means that the so-called 
G-structures are understood (see e.g. Sternberg 1964). G-structure is a tool to describe 
geometry in terms of vector bases (frames) at each point. Let G be a matrix group 
acting in the tangent space of the manifold A. One says that two frames (at some 
point) (e , )  and (E,),  a = 1,. . . , dim& are G-equivalent when Ea = gteb, for some 
matrix (g:)EG. If the sets of G-equivalent frames in all points of A are fixed, one 
says that the G-structure is given in A. (In general relativity, for example, it is useful 
to consider tetrad fields, i.e. L-structures with L being the Lorentz group.) 

Consider some space K with a G-structure. If dimX = n, then G c GL(n, R). If 
A cK is an m-dimensional surface, we can try to provide it with some G'-structure. 
Let (ed),  6 = 1,. . . , n be a frame at z E A  such that (ea) belongs to the given 
G-structure in X and its first m vectors e,, a = 1 , .  . . , m, are tangent to A. It is not 
always possible to choose such a frame (called an adopted frame). If such frames can 
actually be chosen at all points of A, we say that such a surface A in X is regular. 
All adopted frames at a point are connected by the transformations with matrices in 
the subgroup G of the group G. 6 consists of the matrices ( g s )  of the group G which 
satisfy g!' = 0 if a = 1, . , . , m ;  6' = m + 1, . . . , II. The first m vectors of an adopted 
frame, being tangent to A, also define a frame in A. Such frames in A are defined 
up to the transformations of the group G' c GL(m, W) which is a certain factor group 
of G. Thus we see that every regular surface in X carries a G'-structure induced by 
the G-structure of X (Schwarz 1982). 

The cR-structure on the surface in the complex space presents an example of the 
induced structure (for details see Schwarz 1982). This example shows, in particular, 
that the induced geometry is not an arbitrary one. Indeed, induced cR-structures are 
necessarily integrable (see above). In general, G'-structure on a surface in a space 
carrying some G-structure satisfies certain conditions. These conditions are imposed 
on the so-called structure functions of the G'-structure. For details and for discussion 
of the sufficiency of these conditions see Schwarz (1982) and Rosly and Schwarz 
(1982a, b). It is revealed there that these conditions give the torsion and curvature 
constraints in N = 1 supergravity. 

One more example of the induced structure was implicitly treated above: there 
we can take the space X carrying the structure of the holomorphic principal K'-bundle 
over the base with the fixed volume element in C4,'. Let us consider real 
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(4 +dim K, 4)-dimensional surfaces in X. It can be easily seen that the surfaces (3), 
(4) are just regular surfaces in N. One can find that the geometry, induced on such 
a surface, corresponds to the 'semiconnection' (in presence of supergravity). Now the 
general 'torsion constraints' of induced geometry give the constraints (6 )  (and the 
supergravity torsion constraints). This provides the link between the gauge superfield 
V, which emerges in the description of regular surfaces, and the superpotential (da, &) 
which defines the 'semiconnection'. 

Let us illustrate some details of the above considerations by a simple example. 
As is well known, there exists the canonical K-connection in the holomorphic K'- 
bundle with a given reduction to the real subgroup K c K'. (In the case K = U(N), 
K' = GL(N, e), this is the canonical connection in the holomorphic Hermitian bundle.) 
Consider some local trivialisation of the reduced K-bundle and take za as a holomor- 
phic coordinate in the base. Then the canonical connection in the reduced bundle is 
specified by the constraints on its field strength (curvature) Fop = 0, F&b = 0. Let us 
show that this construction corresponds to an induced geometry. 

The structure of the holomorphic principal Kc-bundle can be described by the 
following G-structure in its total space P'. At each point of P', there are complex 
vectors ti and 3/82 ", where ti correspond to some fixed complex basis of the Lie algebra 
of K'. Then the G-structure in P' is described by the frames consisting of real and 
imaginary parts of the vectors ti, 8/82". Consider the surfaces in P' which are tangent 
at each point to vectors Re ti, 8/82 a (in coordinates z a  chosen appropriately for each 
point of a surface). These surfaces are regular. On the other hand, we see that any 
such surface P c P' is a reduction of P' to the real subgroup K c K'. The induced 
G'-structure is described by the frames (Re ti, Re ga, Im aa), where are some 
complex vectors (of type (1,O)). The group G' turns out to consist of the following 
transformations of these frames: ti -* ti, ga -* C:adp. As a result we obtain the tangent 
(horizontal) subspace Hp, spanned by Re  ga, Im a,, at each p E P. The general 'torsion 
constraints' of the induced geometry show in this case that Hp's are invariant under 
the right action of K and thus the defined connection in P satisfies Fa@ = 0, F&g = 0. 
We conclude that the induced geometry in PcP' corresponds to the canonical 
connection in the reduced bundle. 

I am grateful to Professor A S Schwarz for introducing me to induced structures and 
also for valuable discussions. I thank A A Tseytlin for helpful discussions and remarks. 
I thank also E A Ivanov, who pointed out that some of the results of this letter 
intersect with his unpublished results. 
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